Relative Navigation to Non-cooperative Targets in LEO: Achievable Accuracy from Radar Tracking Measurements

R. Kahle (1), M. Weigel (1), M. Kirschner (1), S. Spiridonova (1), E. Kahr (2), and K. Letsch (3)

(1) DLR, German Space Operations Centre (GSOC)
(2) University of Calgary, Department of Geomatics Engineering
(3) Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR)
Motivation

Any future *space debris removal* or *on-orbit servicing mission* to a non-cooperative target faces the problem of the initial relative orbit determination.

Study objectives:

- How accurately can the relative orbit be determined from the ground by means of Client radar tracking?
- What are the requirements on the radar tracking campaign?
Far Range Navigation Concept

Client

Servicer

GPS data dump
TIRA tracking

time

24 h
T_{end}

TIRA pre-processing

GPS pre-processing

Orbit Determination

Orbit Determination

Relative Elements Generation

OOP Command Generation
CanX-2 Radar Tracking Campaign

CanX-2:
- Triple CubeSat with dimensions 10 x 10 x 34 cm
- Carries a NovAtel OEM4-G2L dual frequency GPS receiver
- Built under the Canadian Advanced Nanospace eXperiment (CanX) program and operated by the University of Toronto
- Sun-synchronous polar orbit with a 635km altitude

Tracking and Imaging Radar (TIRA):
- Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR), Wachtberg, Germany
- 34-meter parabolic antenna system
- Narrowband, fully coherent mono-pulse tracking radar at L-band (1.333 GHz)
- Wideband Ku-band imaging radar
CanX-2 Radar Tracking Campaign

Timeline of TIRA Radar Tracking and GPS Operations
Precise Reference Orbit from CanX-2 GPS measurement

- NovAtel OEM4-G2L dual frequency GPS receiver provides pseudo range (PR) and carrier phase (CP) raw measurements
- Use of DLR/GSOC’s Reduced Dynamics Orbit Determination Software
- Estimated reference orbit accuracy: 1 m (RMS) in the radial and cross-track components and 5 m in the along-track component
Statistical Orbit Determination Analysis Methodology

1) Systematic combination of 2-8 radar tracking passes within 48 hours
2) Orbit determination for 529 cases
3) Orbital element errors w.r.t. GPS reference orbit at end of tracking interval
4) Mean and standard deviation for identical tracking scenarios

Combination of radar passes on ascending/descending orbital arcs
Client Orbit Determination from Radar Tracking Data

Use of DLR/GSOC’s ODEM software

- Dynamic modeling: 60 x 60 geo-potential, third bodies sun & moon, solar radiation pressure, atmospheric drag
- Measurements: Range, azimuth and elevation angles
- Additional estimation: Drag coefficient, constant measurement bias

Pre-processing:

Graphs showing residuals over time with error estimates for azimuth, elevation, and range.

- Residuals in Pass #7:
 - Azimuth Error [°]: -20 ± 51
 - Elevation Error [°]: -5 ± 58
 - Range Error [m]: 424 ± 1466

- Residuals after filtering:
 - Azimuth Error [°]: -19 ± 32
 - Elevation Error [°]: 0 ± 33
 - Range Error [m]: 13 ± 43
Radar Tracking - Orbit Determination Results

→ Large errors for exclusive combinations of ascending or descending tracking passes (0h*, 24h*, 48h*)
With increasing tracking arc length and increasing number of passes the ballistic coefficient is determined more accurately.
Expected Relative Orbital Element Accuracy

Example mission characteristics:

- Altitude = 550 km, eccentricity = 0.002, inclination = 87.0 deg
- Client ballistic coefficient: 0.0069 m²/kg (e.g. $C_D = 2.3$, $A = 3$ m², $m = 1000$ kg)

Client radar tracking errors are assumed to be the same as those for CanX-2.

Servicer GPS-based navigation accuracy (RMS):

<table>
<thead>
<tr>
<th></th>
<th>a [m]</th>
<th>e [-]</th>
<th>i [deg]</th>
<th>Ω [deg]</th>
<th>ω [deg]</th>
<th>u [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS</td>
<td>0.37</td>
<td>4.5E-8</td>
<td>1.2E-5</td>
<td>3.1E-6</td>
<td>1.8E-3</td>
<td>3.1E-5</td>
</tr>
</tbody>
</table>

Relative Orbital Elements:

\[
\begin{align*}
\delta a &= a - a_c \\
a \delta \lambda &= a(u - u_c) + a(\Omega - \Omega_c) \cos i \\
a \delta e_x &= a(e_x - e_x^c) \\
a \delta e_y &= a(e_y - e_y^c) \\
a \delta i_x &= a(i - i_c) \\
a \delta i_y &= a(\Omega - \Omega_c) \sin i
\end{align*}
\]

\[
\delta \ddot{a} = \begin{pmatrix}
-1
n
\Delta B \rho v^2 (t - T_{End}) \\
\frac{3}{4} \Delta B \rho v^2 (t - T_{End})^2 \\
0
\end{pmatrix}
\]

\[
\begin{pmatrix}
\delta \ddot{a} \\
\delta \ddot{\lambda} \\
\delta \ddot{e}_x \\
\delta \ddot{e}_y \\
\delta \ddot{i}_x \\
\delta \ddot{i}_y
\end{pmatrix}_{\text{Drag}} =
\begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}
\]
Achievable Relative Orbit Accuracy (RMS) in 550 km Orbit

<table>
<thead>
<tr>
<th>Tracking scenario</th>
<th>δa [m]</th>
<th></th>
<th>$a\delta \lambda$ [m]</th>
<th></th>
<th>$a\delta e$ [m]</th>
<th></th>
<th>$a\delta i$ [m]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_{End}</td>
<td>$T_{End}+24h$</td>
<td>T_{End}</td>
<td>$T_{End}+24h$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h, 3 passes</td>
<td>3.3</td>
<td>9.2</td>
<td>106.9</td>
<td>530.5</td>
<td>35.8</td>
<td>85.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h, 4 passes</td>
<td>2.3</td>
<td>6.7</td>
<td>79.3</td>
<td>388.5</td>
<td>34.2</td>
<td>45.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h, 5 passes</td>
<td>2.1</td>
<td>5.9</td>
<td>72.2</td>
<td>338.9</td>
<td>35.0</td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36h, 3 passes</td>
<td>2.4</td>
<td>4.6</td>
<td>92.3</td>
<td>254.4</td>
<td>43.2</td>
<td>67.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36h, 4 passes</td>
<td>1.7</td>
<td>3.2</td>
<td>59.6</td>
<td>163.0</td>
<td>28.7</td>
<td>39.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36h, 5 passes</td>
<td>1.6</td>
<td>2.4</td>
<td>37.0</td>
<td>93.5</td>
<td>21.1</td>
<td>18.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48h, 3 passes</td>
<td>1.9</td>
<td>3.8</td>
<td>95.4</td>
<td>229.7</td>
<td>33.4</td>
<td>63.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48h, 4 passes</td>
<td>1.7</td>
<td>2.8</td>
<td>63.8</td>
<td>145.6</td>
<td>23.3</td>
<td>53.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48h, 5 passes</td>
<td>1.6</td>
<td>2.4</td>
<td>53.9</td>
<td>109.9</td>
<td>16.6</td>
<td>40.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48h, 6 passes</td>
<td>1.5</td>
<td>2.2</td>
<td>46.8</td>
<td>90.8</td>
<td>12.0</td>
<td>31.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48h, 7 passes</td>
<td>1.6</td>
<td>2.1</td>
<td>42.6</td>
<td>79.5</td>
<td>9.7</td>
<td>24.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

δa: relative semi-major axis
$a\delta \lambda$: relative mean longitude (*equivalent to relative along-track separation*)
$a\delta e$: relative eccentricity vector norm (*equivalent to max. radial separation*)
$a\delta i$: relative inclination vector norm (*equivalent to max. normal separation*)
Conclusions

The achieved results demonstrate the potential of the proposed ground-based relative navigation concept for the far range approach of a debris removal or on-orbit servicing satellite to its target object.

The provided ROE accuracies are important parameters within the mission analysis and design phase.
They are necessary, for example, to derive relative navigation sensor requirements or to design the formation geometry for the approach phase.

From the CanX-2 campaign we derive the following requirements on future radar-tracking campaigns:
• The tracking duration should cover a minimum of 24 hours preferably 36 hours for a precise ballistic coefficient estimate,
• Ascending and descending passes should be tracked to improve the out-of-plane accuracy, and
• The campaign should comprise a minimum of 4 tracking passes.