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Abstract: This research is to validate state-dependent Riccati equation (SDRE) control 
performance using a GPS based hardware-in-the-loop (HIL) testbed. The SDRE 
nonlinear control technique with the new developed state-dependent coefficient (SDC) 
form is applied to the formation-keeping. The established SDC form can be formulated 
to include all the nonlinearities in the relative dynamics and J2 orbital perturbation. To 
validate the SDRE formation keeping control developed, a closed-loop HIL testbed was 
configured, and a test formation flying scenario was established. The developed 
formation-keeping controller has robustness in a variety of perturbations, such as the 
gravity perturbation, air drag and solar pressure etc. 
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1. Introduction 
 
Satellite formation flying is an attractive alternative to the traditional single satellite 
mission architecture. This is because in using several small satellites, space missions 
can be more efficient, flexible, and cost effective. Many innovative formation flying 
missions, such as virtual telescopes for astronomical observations, laser interferometers 
for the detection of gravitational waves, and synthetic aperture radar interferometers 
have been proposed in the last few decades. The gravity recovery and climate 
experiment (GRACE) mission, for example, uses a pair of satellites flying in formation in 
a low earth orbit (LEO) to make accurate gravitational measurements. The TerraSAR-X 
add-on for Digital Elevation Measurements (TanDEM-X) mission will fly in close 
formation with the already launched TerraSAR-X satellite to provide elevation 
measurements of the Earth’s surface. TerraSAR-X is one of the several missions 
proposed that will use formation flying satellites for synthetic aperture radar (SAR). The 
PRISMA mission is a Swedish micro-satellite mission aimed at the demonstration and 
flight validation of key technologies for formation flying [1].  
 
The most challenging aspects of satellite formation flying missions are the relative 
navigation and control of satellites in formation flying. In particular, relative navigation 
plays a key role in formation flying. The global positioning system (GPS) can be an 
important component of navigation sensors because it provides measurement data 
processed for determining the precise state. Satellite formation flying also involves 
controlling the relative position between satellites. The primary concern with satellite 
formation flying is fuel consumption. Controller design is crucial for the purpose of 
conserving fuel, and a good satellite controller is one that will use as little fuel as 
possible to accomplish the maneuver. Control strategies for formation flying control in 



2 

the presence of several perturbations have been conducted by various researchers. 
Kong [2] has discussed the optimal cluster trajectories for the reconfiguration problem, 
which has been applied to solve minimum energy problems using Hill’s equation and a 
linearized J2 model. Kim et al. [3] has developed a multi-impulse guidance scheme in 
Hill’s frame for satellites flying in formation on the basis of a set of relative orbital 
elements, including the first-order effects of J2 perturbations. Sparks [4] has studied the 
performance of linear quadratic regulators (LQR) for satellite formation keeping in the 
presence of gravity perturbations. Schaub and Alfriend [5] discussed the effects of 
applying impulsive control on orbital elements that were perturbed by the J2 effect. The 
control laws for formation establishment and keeping have also been presented by 
Vadali and Vaddi [6]. Vaddi and Vadali [7] presented Lyapunov, LQR, and period-
matching control schemes that generate circular projected orbits. All of these studies, 
however, consider the linear control technique or linearized relative dynamics. Gurfil et 
al. [8] presented a novel nonlinear adaptive neural control methodology for the 
challenging problem of deep-space spacecraft formation flying. Some previous studies 
have applied the state-dependent Riccati equation (SDRE) nonlinear control technique 
to satellite formation flying. Irvin and Jacques [9] compared various linear and nonlinear 
control techniques such as LQR, LQR with linearizing feedback, SDRE, and sliding 
mode control. However, the orbit of the chief satellite was assumed to be circular, and 
the state-dependent coefficient (SDC) form that was designed included a singularity. 
The chief satellite’s circular orbit may cause a large position error in the case of elliptic 
orbits, and the singularity can make the system unstable. Won and Ahn [10] also 
applied the SDRE control technique to non-coplanar formation flying with a constant 
separation distance, and to in-plane formation flying with a large angle of separation; 
they extended the chief orbit to an elliptical orbit. Nevertheless, some nonlinearities of 
relative motion were ignored in this study when the SDC form was designed, and this 
caused a rather large position error and reconfiguration problems. Park et al. [11] 
established that an SDC form can be formulated to include all the nonlinearities in the 
relative dynamics and J2 orbital perturbation.  
 
However, it is a challenge to validate the SDRE formation keeping control in the relative 
dynamic system with perturbation. Hence, the final objective of this research is to 
validate SDRE control performance using a GPS-based hardware-in-the-loop (HIL) 
simulation testbed. The SDRE technique is utilized as a nonlinear controller for the 
satellite formation keeping problem. For the SDRE controller, SDC form is formulated to 
include nonlinearities in the relative dynamics and J2 orbital perturbation. Finally, to 
validate the formation keeping controller developed, a closed-loop HIL simulation 
testbed was configured and a test formation flying scenario was established [12]. The 
current paper consists of four three sections and conclusions. In Section 2, the SDRE 
technique is briefly introduced to establish the SDRE controller with the SDC form for 
the nonlinear relative dynamics and the SDC forms are formulated from general 
nonlinear equations of relative motions. Section 3 presents discussions on the HIL 
simulation settings for closed-loop HIL simulation. Simulation results for closed-loop 
formation keeping are also presented. Finally, conclusions are given in Section 4. 
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2. SDRE Technique for Satellite Formation Keeping Control  
 
By using the SDRE control technique, which was introduced by Cloutier [13], a 
nonlinear dynamic equation can be reformulated into an SDC form and a Riccati 
equation can be solved for the LQR control technique. The SDRE control technique is 
intuitively similar to the LQR technique in terms of the tradeoff between the control effort 
and state errors. Furthermore, the SDRE control technique has good robustness 
properties, similar to the LQR. Since the SDRE control law varies through the state of 
satellite, it allows more accurate control of nonlinearity as the distance between two 
satellites and orbital eccentricity change. Thus, a nonlinear control technique of the 
SDRE is utilized to solve the formation keeping control problem based on the SDC form 
developed. 
 
2.1 State-Dependent Riccati Equation 
 
The SDRE control technique is used to control the relative nonlinear system. A general 
nonlinear dynamic system is given by 
 
 ( ) ( )x f x g x u 

     (1) 
 
where nx R

 , mu R
 . It is assumed that (0) 0f 

 
 and ( ) 0g x 

  for all x
 . The optimization 

problem is to find the control, u
 , that minimizes the performance index 

 

     
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J x Q x x u R x u dt 

       (2) 

 
where Q  is a real symmetric positive semi-definite matrix, and R  is a real symmetric 
positive definite matrix. The SDRE obtains a suboptimal solution to the above problem. 
Using direct parameterization of ( ) ( )f x A x x

     and ( ) ( )g x B x
  , the nonlinear Equation of 

relative motion can be transformed to a SDC form 
 
 ( ) ( )x A x x B x u 

      (3) 
 
Note that the choice of ( )A x

  is not unique, and this may lead to a suboptimal controller. 
The SDRE controller solves the state-dependent Riccati equation to obtain ( ) 0K x 

  
 
 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T TK x A x A x K x K x B x R x B x K x Q x   

           (4) 
 
Then, the SDRE controller uses the nonlinear control law 
 
 1( ) ( ) ( ) ( )Tu x R x B x K x x 

       (5) 
 
Note that the Riccati matrix, ( )K x

 , depends on the choice of ( )A x
 . Because ( )A x

  is not 
unique, there are multiple suboptimal solutions. In addition, Cloutier [13] proves that if 
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( )A x
 , ( )B x

 , ( )Q x
 , and ( )R x

  are smooth, and the pair [ ( )A x
 , ( )B x

 ] is point-wise stabilize, for all 
x
 , then the SDRE produces a closed-loop solution which is locally asymptotically stable. 
 
2.2. Nonlinear Equation of Relative Motion 
 
A general nonlinear equation of relative motion is expressed as 
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    
 
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




       
   
          

     
 

 

   

   



 (6) 

 
where x , y  and z are state variables to describe the relative position vector,  , in the ˆxe , 
ˆye  and ˆze  axes, respectively, and xa , 

ya  and za  are the orbital perturbation terms, such as 

the geopotential, thrust, air drag, and solar radiation pressure.  is the true anomaly of 
the chief, cr  is the radius of the chief orbit and   is a gravitational parameter. Finally,   
is defined as 
 
  3/23 2 2 2( )c cr r x y z      

  (7) 

 
Equation 6 is equal to Hill’s equation when the chief orbit is a circular orbit and the 
distance between the chief and deputy is very close.  
 
2.3. State-Dependent Coefficient (SDC) Form with J2 Orbital Perturbation 
 
We rewrite the term of 

2c
c

r
r

 


 
 

 
 in Eq. 6 to preserve the non-linearity as much as 

possible and to avoid a singularity. Using Eq. 7, the term can be expressed in the 
following form 
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   
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  (8) 

 
Let’s define 
 

 
2 2 2

2 2 2 2

2 2

c cc c c c

x y z x y z
x x y z

r rr r r r


      
              

     
 (9) 

 
Then, by negative binomial series 0, Equation 9 becomes 
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r r r

    

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 

 (10) 

 
where   is defined as a series 
 

 1 2 1 2 1 3 2

3 3 3
1 2 3

2 2 2
1 ,  ,  ,  ,

2 3 4
         

            
               (11) 

 
Consequently, Equation 6 becomes 
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    
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   
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   

  
 
  

  (12) 

 
where state variables, 1x , 2x , 3x , 4x , 5x  and 6x  are x , x , y , y , z  and z  in the LVLH 

coordinate, respectively. Equation 12 has the structure described in Eq. 3, and is the 
newly developed SDC form without J2 perturbation 
 
In the LVLH coordinate system, the acceleration (

2Ja
 ) of J2 perturbation is expressed as 
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      
  

  (13) 

 
where 

eR  is the mean radius of the Earth, r is the radius from the center of the Earth, J2 
is the coefficient of J2 perturbation, i  is the inclination. Then, the equation of motion 
with J2 perturbation for the chief satellite and the deputy satellite are 
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c c J c

d d J d

r g r a r

r g r a r
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 
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Then Eq. 13 becomes 
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where the argument of latitude is     , J  index is defined as follows 
 

 

2 2
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 (16) 

 
Substituting Eq. 13 with Eq. 14 yields 
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Because the chief satellite rounds the Earth, the reference [10] relationship holds. 
where the superscript ‘s’ notes the value in the rotating coordinate and 


 is the angular 

velocity of the rotating coordinate with respect to the inertial coordinate, and 


 is 
expressed in the rotating coordinate.  
 
In the right side of Eq. 18, we can add other perturbation terms a

  due to thrust, air drag 
etc., if necessary. Rearranging the Eq. 18, then 
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Equation 19 has to be transferred to a SDC form in Eq. 3. To do that, the orbital 
elements ( ,i  ) need to be expressed by the state variables ( , , , , ,x x y y z z   ).  
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The transformation matrix introduced by Gim and Alfriend [15] is used to convert the 
orbital elements into the state variables of the relative motion under J2 perturbation. 
Rewriting the J2 term Eq. 19 gives 
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where d ci i i  , d c     and   is defined as 
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The final term on the right side of Eq. 20 can be transferred into a SDC form because   
is explicitly expressed by x , y , z  in Eq. 9. Substituting Eq. 16 with the first term on the 
right side of Eq. 20 yields 
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Rewriting Eq. 22 using the Taylor series, then, gives 
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2 2 2 2 2 2 2 2

2 2

2 2 2 2 2
2 2 2 2 2

2

2 2

3sin ( )sin ( ) 3sin sin

3 ( ) ( ) ( ) ( )

sin ( )sin 2( ) sin sin 2

2 2 2 2 2 2

2 2 2

sin 2

i i i

i i i i i

i i

i i i

i i i

i i i

i i i i

i i i

  

    

 

   

         

   

               

       

   

        
  

      

    

 
2 2 2 2 2

( ) sin( ) sin 2 sin

2 2 ( ) 2 ( )( ) 2 ( )( )( )2i i i i

i i i

i i i i i       

   
                   

  

         

 (23) 

 
Equations 23 can be transferred into the SDC form. The newly developed SDC form 
with J2 perturbation is 
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           
           
           
           
   

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2
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2

3

4
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A A A A A Ax
A A A A A Ax

x A A A A A A

x A A A
x

 
 
 
 

 
 
 
  
 








       
           

2 2 2

2 2 2 2 2 2

1

2
1

3
2

4
3

5

6

0 0 0

1 0 0

0 0 0

0 1 0

0 0 03 5, 4 5,5 5,6
0 0 16,1 6, 2 6,3 6,4 6,5 6,6

J J J

J J J J J J

x

x
u

x
u

x
u

xA A A
xA A A A A A

                                                          

 (24) 

 
The components of the matrix 

2JA  are listed by Park et al. [11] in greater detail. The new 

SDC form with J2 perturbation is successfully established.  
 
2.4. Formation Keeping Control using SDRE 
 
For formation keeping, an optimization cost can be represented by the performance 
index 
 
  

0
( ) ( )T T

FK d dJ x x Q x x u Ru dt


   
       (25) 

 
where dx

  is the desired states (position and velocity vectors of the deputy) that can be 
determined with respect to time when a desired formation geometry is set. x

  is the 
states describing the deputy’s position and velocity with respect to the chief, and 
subscript ‘FK’ means Formation Keeping. Q and R  are weighting matrixes determined by 
considering the trade-off between the required energy and formation keeping error. For 
formation keeping, x

  is forced to be dx
  using the SDRE control law given as 

 
 1 ( )( )T

du R B K x x x  
     (26) 

 
where K  is a positive-definite solution of the algebraic matrix Riccati equation 
 
 1( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T TK x A x A x K x K x BR x B K x Q   

        (27) 
 
In SDRE controller, K(x)

 and (A x)
  matrices vary through the states. Therefore, Equation 

26 has to be calculated in point-wise (every time step).  
 
3. Validation of Satellite Formation Keeping Control 
 
Formation-keeping allows the satellite to maintain its formation geometry under various 
orbital perturbations. The relative dynamics of the deputy and chief satellites in any 
case cannot consider all the effects from all the orbital perturbations, so that feedback 
control for formation-keeping is always required. It is a challenge to validate the SDRE 
formation keeping control in the relative dynamic system with perturbation. Hence, the 
objective of this research is to validate SDRE control performance using a GPS-based 
HIL testbed. In this section, the HIL simulation testbed configuration and a simulation 
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setting are presented. Simulation results for closed-loop formation keeping control are 
also presented. 
 
3.1 HIL Simulation Testbed Configuration 
 
The HIL testbed consists of a GPS RF signal simulator, GPS receiver hardware, a GPS 
monitoring system, a flight control system, and a remote control system [12]. The GPS 
signal simulator is capable of simultaneously simulating all of the GPS RF signals 
received by user satellites. A simulated GPS signal is then sent to a GPS receiver. The 
GPS receivers are fed with RF signals, and produce GPS raw measurements such as 
pseudorange, carrier phase, Doppler data, and broadcast ephemerides data for the 
GPS satellites. The GPS monitoring system receives these data, and they are sent to 
the flight control system. The flight control system collects simultaneous raw 
measurements from the GPS monitoring systems and performs filtering processes for 
absolute and relative navigations. In addition, the flight control system performs control 
processes by using real-time navigation data. The control algorithm is based entirely on 
the relative navigation solutions provided by filter processing. Control accelerations are 
transmitted to a remote control system. The remote control system numerically 
integrates the satellites’ states and adds the control acceleration. It also controls the 
GPS signal simulator through the provision of the current satellite states, thereby 
closing the loop of the HIL simulation testbed. In this simulation, the deputy satellite is 
actively maneuvering, while the chief satellite is passive. Since only one L1 single 
frequency GPS receiver was available during this study, the navigation filter reads a 
chief GPS observation log file and only the deputy observations are supplied by the 
receiver in real time.  
 

 
Figure 1. HIL Simulation Testbed Configuration 
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3.2 HIL Simulation Scenario Setup 
 
A simulation formation flying scenario comprising a formation acquisition and keeping in 
a LEO has been established. The goal of the scenario is to achieve leader-follower 
formation flying with a 100 m along-track separation and to maintain this formation flying 
for some time. The initial formation flying satellite consists of two satellites in a near 
circular orbit with an altitude of 550 km, 97.5 degree inclination, and an initial along-
track separation of 1 km.; the drag coefficient DC  is 2.3; the cross-section area for drag 
computation is 1 2m ; and the solar radiation pressure coefficient RC  is 1.3. For the 
present scenario, thrusters have been selected which can be accommodated on a small 
satellite and which provide small impulse bits suitable for fine formation control. A 
pulsed plasma thruster (PPT) system has been assumed. It provides in a doubled 
configuration an impulse-bit of 0.112 mN and fires at a rate of 1 Hz. The mass of the 
satellite is equal to 20 kg.  
The initial orbital elements are listed in Tab. 1. High-fidelity satellite orbits are 
propagated by a precision real-time orbit propagator running on a remote control system. 
A numerical integration algorithm with various differential equation orders and step is 
applied to propagate the satellites’ motion. Because the algorithm provides interpolation 
for a dense output, it is ideally suitable for supporting the required 100-ms period of 
motion messages for the GPS signal simulator. The adopted force model accounts for 
the Earth’s gravitational field by using a 20 × 20 subset of the joint gravity model 3 
(JGM-3). Furthermore, it accounts for perturbations due to atmospheric drag and solar 
radiation pressure, as well as solar and lunar gravitational perturbations. The Harris-
Priester density model has also been adopted for atmospheric drag [16]. 
 
3.3 HIL Simulation Results 
 
A closed-loop formation keeping simulation has been performed based on the 
configuration in Section 3.1. Formation keeping control is successfully achieved for the 
100 m leader-follower formation flying and formation keeping begins after formation 
acquisition. Figure 2 shows the position difference between the deputy and chief 
satellites during the formation-keeping phase. Thus, the targeted leader-follower 
formation flying in an along-track separation of 100 m has been maintained with a mean 
position difference error of approximately 0.2 m and a standard deviation (1 ) of 0.9 m 
 

 Table 1. Initial Orbital Elements for Test Simulation Scenario 
Orbital Elements Chief satellite Deputy satellite 
Semi-major axis (a) [km] 6937.466 6937.466 
Eccentricity (e) 0.00120 0.00120 
Inclination (i ) [deg] 97.615 97.615 
Argument of perigee (ω) [deg] 359.951 359.951 
Lon. Ascend node (Ω) [deg] 339.484 339.484 
Mean anomaly (M) [deg] 0.0000450 0.0084424 
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Figure 2. Position difference between the deputy and chief satellites 

 
 

 
Figure 3. Control accelerations in along-track direction. 

 
The performance of the SDRE control algorithm for formation keeping can be evaluated 
by the maximum, mean, and standard deviations (1 ) of the deputy satellite’s state with 
respect to the chief satellite’s state. Figure 3 shows the control accelerations in along-
track direction during the formation keeping simulations. In the validation performed, a 
total V is required of 4.8 m/s in the along-track direction to achieve formation keeping. 
The V  in the along-track direction is larger than in the other directions because the 
control is primarily in this direction.  
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4. Conclusions 
 
In the current paper, satellite formation keeping controllers are proposed using the 
SDRE technique. SDC form is developed to hold all the non-linearities in the relative 
motion and J2 orbital perturbation to utilize the SDRE technique. The performance 
index of the controller is designed through tradeoff between the required energy and 
tracking error. To validate the SDRE formation keeping controller developed, a closed-
loop HIL testbed was configured, and a test formation flying scenario was established. 

In the validation performed, a total V is required of 4.8 m/s in the along-track direction 

to achieve formation keeping. The V  in the along-track direction is larger than in the 
other directions because the control is primarily in this direction. Thus, the developed 
SDRE controller for formation-keeping has robustness in a variety of perturbations, 
including the aspherical geopotential perturbation, air drag, solar radiation pressure, and 
third-body gravitational perturbation. The result above simulation that formation keeping 
controller work well during formation flying simulation.  
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